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1 Poisson Distribution

The Poisson distribution is the distribution used for occurrences of rare events.

Definition 1.1 (Poisson Distribution). Assuming X ∼ Poisson(λ), we have

• PMF: e−λ λ
k

k! where k = 0, 1, 2, ....
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• Expected value: λ.

• Variance: λ.

Check. We check that each of components in the definition above are true.

• PMF. To check that the PMF is indeed a probability distribution, we need to check that all the
probabilities sum to 1. Hence,

∞∑
k=0

e−λ
λk

k!
= e−λ

−∞∑
k=0

λk

k!
= e−λ · eλ = 1 .

• Expected value. We have

E(X) =

∞∑
k=0

ke−λ
λk

k!
= λe−λ

∞∑
k=0

λk−1

(k − 1)!
= λe−λ

∞∑
k=1

λk

(k)!
= λ .

• Variance. Since Var(X) = E(X2)− E(X)2, we need to find E(X2). We have

E(X2) =

∞∑
k=0

k2e−λ
λk

k!
=

∞∑
k=0

(k2 − k + k)e−λ
λk

k!
=

∞∑
k=0

(k(k − 1))e−λ
λk

k!
+

∞∑
k=0

ke−λ
λk

k!
= λ2 + λ.

Hence Var(X) = E(X2)− E(X)2 = λ .

Concept 1.2. What constitutes a rare event? A rare event can be characterized by a Bernoulli random
variable with sufficiently small p. But how small?

We can call an event rare if its probability of success p is such that lim
n→∞

np <∞. Intuitively, this means

that p is so small that it decays faster than n increases.

Theorem 1.3 (Law of Small Numbers). If np→ λ as n→∞, then

lim
n→∞

(
n

k

)
pk(1− p)n−k = e−λ

λk

k!
.

In other words, the binomial distribution of an exceedingly rare event will converge to the Poisson distri-
bution.

Proof. We make three observations:

1. lim
n→∞

n!

(n− k)! nk
= lim
n→∞

(n
n

)
·
(
n− 1

n

)
· ... ·

(
n− (k − 1)

n

)
= 1.

2. lim
n→∞

(np)k = λk.

3. lim
n→∞

(
1− np

n

)n−k
= lim
n→∞

(
1− np

n

)n·n−kn ≈ (1− λ

n

)n
→ e−λ.
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From these three observations, we have

lim
n→∞

(
n

k

)
pk(1− p)n−k = lim

n→∞

n!

(n− k)! · k!
pk(1− p)n−k

= lim
n→∞

1

k!
· n!

(n− k)! · nk
· (np)k ·

(
1− np

n

)n−k
= e−λ

λk

k!
.

Proposition 1.4. If X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) are independent, then

X1 +X2 ∼ Poisson(λ1 + λ2).

Proof. As a sanity check, we confirm that E(X1 +X2) = Var(X1 +X2) = λ1 + λ2. For rigor, we have

P(X1 +X2 = k) =

k∑
l=0

P(X1 = l,X2 = k − l)

=

k∑
l=0

P(X1 = l) · P(X2 = k − l)

= e−(λ1+λ2)
k∑
l=0

λk1
l!
· λk−l2

(k − l)!

= e−(λ1+λ2) (λ1 + λ2)k

k!

k∑
l=0

k!

(λ1 + λ2)k
· λ

k
1

l!
· λk−l2

(k − l)!︸ ︷︷ ︸
PMF of Binomial(k,

λ1
λ1+λ2

)

= e−(λ1+λ2) (λ1 + λ2)k

k!
.

Hence X1 +X2 ∼ Poisson(λ1 + λ2).

Proposition 1.5. For X1, ..., Xn ∼i.i.d. Poisson(λ) for some λ, the MLE for λ is X̄.

Proof. Use the typical MLE method: joint likelihood → log the likelihood → differentiate and set to 0 →
solve for λ.

2 Methods of CI Construction

Recall that a (1−α)% confidence interval is an interval [λleft, λright] that has a 1−α probability of covering
the true parameter λ.

For this section, we work with confidence intervals for estimators of the Poisson distribution. Hence, recall
that the MLE of the Poisson distribution is the sample mean.

2.1 Wald’s Method

Theorem 2.1. Using the CLT, the law of large numbers, and Slutsky’s theorem, the (1 − α)% confidence
interval is λ̂− z1−α2 ·

√
λ̂

n
, λ̂+ z1−α2 ·

√
λ̂

n

 , where z1−α2 = Φ−1
(

1− α

2

)
.
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Proof. By the CLT, λ̂−λ√
λ/n
→ N(0, 1). By the law of large numbers, λ̂ → λ. Hence Slutsky’s theorem gives

that
λ̂− λ√
λ̂/n

→ N(0, 1).

From this follows the (1−α)% confidence interval shown above. To note some observations, observe that

1. As n→∞, the CI gets narrower and hence more accurate.

2. As α→ 0, the CI gets wider and its length goes to ∞.

While being the simplest method, Wald’s method is unfortunately not very accurate, given its dependence
on both the CLT and the law of large numbers.

2.2 Wilson’s Method

Wilson’s method depends solely on the CLT, and hence removes one of the sources of estimation from Wald’s
method. This makes Wilson’s method more accurate that Wald’s.

Theorem 2.2. Using the CLT, the (1 − α)% confidence interval is given by the solutions (solve for λ) to
the equation

(λ̂− λ)2 = z2
1−α2
· λ
n
.

Proof. By the CLT, λ̂−λ√
λ/n
→ N(0, 1). Hence the event

P

(∣∣∣∣∣ λ̂− λ√
λ/n

∣∣∣∣∣ < z1−α2

)
= P

(
(λ̂− λ)2

λ/n
< z2

1−α2

)

= P
(

(λ̂− λ)2 < z2
1−α2
· λ
n

)
≈ 1− α.

Now, (λ̂− λ)2 < z2
1−α2

· λn if and only if λ is in between the solutions for the equation (λ̂− λ)2 = z2
1−α2

· λn ,
solved for λ. Hence if f(λ) = (λ̂− λ)2, then the (1− α)% confidence interval is[

sol1

(
f(λ) = z2

1−α2
· λ
n

)
, sol2

(
f(λ) = z2

1−α2
· λ
n

)]
.

Notice that as n→∞, the slope of z2
1−α2
· λn decreases, hence making the CI narrower. Furthermore, this

CI is asymmetrical and for good reason; the parameter for the Poisson distribution is strictly positive, so it
makes sense for the CI to be longer on the right.

2.3 Variance Stability Transformation (VST)

Proposition 2.3. Suppose g is a differentiable function. Then if X converges to a normal distribution with
small variance, then g(x) converges to a normal distribution also.

Proof. We provide only an intuitive proof. Because g is differentiable, it is approximately linear within
the small variance of X. Since the linear transformation of a normally distributed random variable is also
normally distributed, g(X) converges to a normal distribution also.
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The problem with Wald and Wilson’s methods is the variance’s dependence on the true parameter λ.
The VST aims to resolve this by applying a differentiable transformation to λ̂. More specifically, the setup
from the CLT is

λ̂− λ√
λ/n

→ N(0, 1), so
√
n · (λ̂− λ)→ N(0, λ).

We can’t construct a CI based on this because the convergent normal distribution depends on λ. The
VST solves this by supplying a differentiable function g such that

√
n · (g(λ̂)− g(λ))→ N(0, 1).

Theorem 2.4. The differentiable function g that works for the Poisson distribution is g(x) = 2
√
x. From

this, the (1− α)% event (and thus interval) is

√
λ ∈

[√
λ̂−

z1−α2
2
√
n
,
√
λ̂+

z1−α2
2
√
n

]
.

Proof. We want to find a g such that
√
n ·(g(λ̂)−g(λ))→ N(0, 1). By the law of large numbers, since λ̂→ λ,

λ̂ lies in a neighborhood of λ. Therefore, we can apply Taylor’s Theorem:

g(λ̂) ≈ g(λ) + g′(λ)(λ̂− λ) +
g′′(λ)

2
(λ̂− λ)2 + · · ·

But since λ̂−λ√
λ/n

converges to a constant distribution, the top and bottom must have the same order.

Therefore, (λ̂− λ) ∼ O
(

1√
n

)
. Hence

g(λ̂) ≈ g(λ) + g′(λ)(λ̂− λ) +O
(

1

n

)
.
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Hence g(λ̂)− g(λ) ≈ g′(λ)(λ̂− λ). Now,

√
n · (g(λ̂)− g(λ)) ≈ g′(λ) ·

√
n(λ̂− λ)︸ ︷︷ ︸
→N(0,λ)

→ N(0, |g′(λ)|2λ).

Setting |g′(λ)|2λ = 1, g′(λ) = 1√
λ
⇐= g(λ) = 2

√
λ. Therefore,

√
n · (2

√
λ̂− 2

√
λ)→ N(0, 1).

From this, the appropriate confidence interval can be obtained.

3 Exponential Distribution

The exponential distribution has a close relation to the Poisson distribution through the Poisson process,
which we explore later.

Definition 3.1 (Exponential Distribution). Assuming X ∼ Exponential(λ), where λ > 0, we have

1. PMF. λe−λx, where x ∈ [0,∞).

2. Expected value. 1
λ .

3. Variance. 1
λ2 .

Proposition 3.2. For X1, ..., Xn ∼i.i.d. Exponential(λ) for some λ, the MLE for λ is 1
X̄

.

In order to construct confidence intervals for λ̂ = 1
X̄

, we need to find an asymptotic distribution for λ̂.
Below are two methods:

1. Delta method. The MLE λ̂ is based on the sample mean, and the sample mean converges in distri-
bution to the normal distribution. In other words, we know that

√
n(X̄ − 1

λ )→ N
(
0, 1

λ2

)
by the CLT,

and we want
√
n(g(X̄)− g

(
1
λ

)
) =
√
n(λ̂− g

(
1
λ

)
)→ N(0, something).

Notice that g(t) = 1
t . The delta method gives that

√
n(λ̂− λ) =

√
n

(
g(X̄)− g

(
1

λ

))
→ N

(
0,

∣∣∣∣g′( 1

λ

)∣∣∣∣2 · 1

λ2

)
= N(0, λ2) .

2. Fisher information. Denoting the density function as pθ(x), define the score as lθ(x) = ∂
∂θpθ(x).

Then the Fisher information is Iθ = E((lθ(x))2).

Recall that λ̂ → N(λ, 1
nIλ ). Computing the score and Fisher information of the MLE of exponential,

we get that
√
n(λ̂− λ)→ N(0, λ2) .

3.1 Confidence Intervals for the Exponential Distribution

3.1.1 Wald’s Method

Asymptotic convergence gives
√
n(λ̂ − λ) → N(0, λ2), the law of strong numbers gives λ̂ → λ. Hence the

(1− α) confidence interval is

λ ∈

[
λ̂− z1−α2 ·

λ̂√
n
, λ̂+ z1−α2 ·

λ̂√
n

]
.
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3.1.2 Wilson’s Method

Asymptotic convergence gives
√
n(λ̂− λ)→ N(0, λ2), so

P

(∣∣∣∣∣
√
n(λ̂− λ)

λ

∣∣∣∣∣ < z1−α2

)
= P

(
|λ̂− λ| < z1−α2 ·

λ√
n

)
≈ 1− α.

Note that λ > 0, so |λ| = λ. Solving the equation |λ̂−λ| = z1−α2 ·
λ√
n

for λ, we get the (1−α) confidence

interval

λ ∈

 λ̂

1 +
z1−α

2√
n

,
λ̂

1−
z1−α

2√
n

 .
Remark 3.3. How can we be sure that there are two solutions to the equation? The slope on the RHS is
z1−α

2√
n

, and the slope on the LHS is 1. What happens if
z1−α

2√
n
≥ 1? Then only the left solution will exist.

However, this is unlikely. In order for
z1−α

2√
n
≥ 1, n ≤ 3. If your n ≤ 3, stop trying to compute CIs and

get more data, please.

3.1.3 VST Method

Asymptotic convergence gives
√
n(λ̂− λ)→ N(0, λ2), so we want a function g such that

√
n(g(λ̂)− g(λ))→

N(0, 1). Using the delta method, we want to solve |g′(λ)|2 ·λ2 = 1 =⇒ g′(λ) = 1
λ . Setting g = log does the

trick. Hence

P(−z1−α2 <
√
n(log(λ̂)− log(λ))) < z1−α2 ) ≈ 1− α.

Manipulating the inequality as an expression of λ̂, we get

λ ∈
[
λ̂ · e−

z1−α
2√
n , λ̂ · e

z1−α
2√
n

]
.

4 Poisson Process

There exists a relationship between the Poisson and exponential distributions. First, note the following
hierarchy.

Remark 4.1. Schematically speaking, we have the hierarchy

random variable→ random vector→ random function.

A random vector is made up of multiple random variables, and a random function can be thought of
as an infinite-dimensional random vector. (The output of a random function is a random variable.) For
example, with the random function X(t), you can build a k-dimensional random vector (X(t1), ..., X(tk)).

Suppose you are observing the arrival of buses. Denote t as time, and N(t) as the number of buses you
have observed until time t. If you plot N(t) against t, you should expect to see a step function, where each
step occurs when you see a new bus. This function N can be modeled as a Poisson process.

4.1 Homogeneous Poisson Process

Definition 4.2. Suppose N(t) ∼ PP (λ), where λ is fixed. Then the following properties hold:
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1. N(0) = 0.

2. For any s, t ∈ R+, (N(s+ t)−N(s)) ⊥ (N(s)). In other words, the Poisson process is memoryless; the
random variables that come after s are not affected by history.

3. For any s ∈ R+, N(s+ t)−N(s) ∼ Poisson(λt).

Remark 4.3. We make a few observations, recalling that the Poisson random variable can be seen as the
distribution that models rare occurrences.

• By property 3, λ represents the number of expected occurrences in a given time frame. Recall that the
expected value of a Poisson random variable is λ, so λ · t gives the number of expected occurrences in
a time frame of length t.

• The Poisson process can be thought of as the accumulation of Poisson random variables. Since sums
of independent Poisson random variables are also Poisson distributed with respect to the sums of the
λs, property 3 can be reinterpreted. If t ∈ N, then

N(t) = N(t+ 0)−N(0)

= N(t+ (t− 1))−N(t− 1)︸ ︷︷ ︸
∼Poisson(λ)

+N(t− 1)−N(t− 2)︸ ︷︷ ︸
∼Poisson(λ)

+...+N(1)−N(0)︸ ︷︷ ︸
∼Poisson(λ)

∼ Poisson(λt).

Definition 4.4. The w1, w2, ... in the graph above are called waiting times. Notice that w1 = X1, w2 =
X1 +X2, ... In other words the waiting times are the partial sums of

∑
Xi.

Theorem 4.5. The times between the waiting times are independently exponentially distributed. In other
words, X1, X2, ... ∼i.i.d. Exponential(λ). Also, wk = X1 + ...+Xk ∼ Gamma(k, 1

λ ).

Proof. We begin by asking what the distribution of X1 is. Computing the CDF, we have

P(X1 ≤ t) = 1− P(X1 > t).

Notice that {X1 > t} is equivalent to {N(t) = 0}. Hence we have

P(X1 ≤ t) = 1− P(X1 > t) = 1− P(N(t) = 0) = 1− P(N(t+ 0)−N(0) = 0) = 1− e−λt.
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This is the CDF of Exponential(λ), so X1 ∼ Exponential(λ). We next ask what the joint distribution of
X1, X2 is. We first calculate the CDF of the conditional distribution:

P(X2 ≤ t | X1 = s) = 1− P(X2 > t | X1 = s).

Notice that {X2 > t | X1 = s} = {N(s+ t)−N(s) = 0}, given that X1 = s. Hence we have

P(X2 ≤ t | X1 = s) = 1− P(X2 > t | X1 = s)

= 1− P(N(s+ t)−N(s) = 0) = 1− eλt.

However, notice that the conditional CDF does not depend on s... we will show that the conditional CDF
is equivalent to the marginal CDF of X2:

P(X2 ≤ t) = E(P(X2 ≤ t | X1 = s))

=
∑
s

P(X2 ≤ t | X1 = s)P(X1 = s)

=
∑
s

(1− eλt)P(X1 = s)

= (1− eλt)
∑
s

P(X1 = s) = 1− eλt = P(X2 ≤ t | X1 = s).

This means that the conditional density and marginal densities of X2 are equivalent, so X1, X2 ∼i.i.d.

Exponential(λ).

By induction, it follows that X1, X2, ... ∼i.i.d. Exponential(λ). Since wk is the sum of identically and
independently distributed exponential random variables, wk = X1 + ...+Xk ∼ Gamma(k, 1

λ ).

4.2 Inhomogeneous Poisson Process

But what if the rate of occurrences (λ) is not fixed? After all, the rate at which buses arrive during rush
hour is different from that at midnight. We can define a rate function λ(t) that corresponds to the time,
and modify the three properties.

Definition 4.6. Suppose N(t) ∼ PP (λ(t)), where λ(t) is the rate function. Then the following properties
hold:

1. N(0) = 0.

2. For any s, t ∈ R+, (N(s+ t)−N(s)) ⊥ (N(s)). In other words, memorylessness still applies.

3. For any s ∈ R+, N(s+ t)−N(s) ∼ Poisson
(∫ s+t

s
λ(x) dx

)
.
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Notice that the homogeneous PP is just a special case of the inhomogeneous PP; if the rate function is
constant, then we get the three properties of the homogeneous PP.

4.3 Poisson Point Process

How can we generalize the Poisson process? The PP is a model of how many times something occurs within
a specific time frame. To generalize, we ask how we can model the number of occurrences within a specific
frame? Think: can we model how many stars there are within a specific window?

Definition 4.7. Let N(T ) ∼ PPP (λ(T )), where λ(·) is a measure. Then the following properties hold:

1. N(∅) = 0.

2. If A ∩B = ∅, then N(A) ⊥ N(B).

3. N(A) ∼ Poisson(λ(A)).

5 Multivariate Gaussian / Normal

Definition 5.1 (Multi-dimensional expectation and variance). If X = (X1, ..., Xp) ∈ Rp is a p-dimensional
random vector, then define

E(X) = (E(X1), ...,E(Xp)) ∈ Rp, and Cov(X) = E[(X − E(X))(X − E(X))T ] ∈ Rp×p.

The diagonal of the covariance matrix gives the variances.

Theorem 5.2. Suppose X is a p-dimensional random vector. Given fixed A ∈ Rq×p, and b ∈ Rq,

E(AX + b) = AE(X) + b, and Cov(AX + b) = ACov(X)AT .

Proof. These are both easily shown by writing out all the components. The matrix proof of the covariance
bit is

Cov(AX + b) = E[[AX + b− E(AX + b)][AX + b− E(AX + b)]T ]

= E[(AX −AE(X))(AX −AE(X))T ]

= AE[(X − E(X))(X − E(X))T ]AT = ACov(X)AT .

Definition 5.3. Suppose X ∈ Rp ∼ N(µ,Σ), where µ ∈ Rp and Σ ∈ Rp×p. The density function of the
multivariate Gaussian is

p(X) = (2π)−
p
2 · [det(Σ)]−

1
2 · e− 1

2 ·(X−µ)TΣ−1(X−µ).

As expected, E(X) = µ and Cov(X) = Σ.

Proposition 5.4. Suppose X ∈ Rp ∼ N(µ,Σ). Then linear combinations of X are multivariate Gaussian
also. In particular, if A ∈ L(Rp,Rq) = Rq×p, then

AX ∼ N(Aµ,AΣAT ).

Proposition 5.5. If X ∈ Rq, Y ∈ Rp are jointly Gaussian (i.e. multivariate Gaussian), and Cov(X,Y ) =
0, then X⊥Y . In other words, given two random vectors that are jointly distributed to the multivariate
Gaussian, independence is equivalent to covariance 0.
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Proof. We want to show that p(x, y) = p(x)p(y). Since X,Y are jointly Gaussian, we have[
X
Y

]
= N

([
µX
µY

]
,

[
ΣXX ΣXY
ΣY X ΣY Y

])
.

Since Cov(X,Y ) = 0, ΣXY and ΣY X are both zero. By writing out the density and factoring, we get our
result.

6 Chi-Square, T

Suppose X1, ..., Xn ∼i.i.d. N(µ, σ2). Recall that µ̂ = X̄ ∼ N(µ, σ
2

n ) exactly (since all the iid variables are
normal also). We want to construct a confidence interval for µ.

1. If σ2 is known, then since we know the exactly distribution of µ̂, we can construct the exact (1− α)
confidence interval

µ ∈
[
X̄ − z1−α2

σ√
n
, X̄ + z1−α2

σ√
n

]
.

2. If σ2 is unknown, we can use Wald’s method. Setting σ̂ = 1
n

∑
(Xi − X̄)2, since σ̂ → σ, we have

from Slutsky’s Theorem that

√
n(µ̂− µ)

σ̂
→ N(0, 1).

Hence the approximate (1− α) confidence interval is

µ ∈
[
X̄ − z1−α2

σ̂√
n
, X̄ + z1−α2

σ̂√
n

]
.

But if we try to use Wilson’s or VST, we run into a problem. Since the normal distribution is made
up of two parameters, we cannot solve the equations required by Wilson’s or VST. It turns out that

√
n(X̄ − µ)√

1
n−1

∑n
i=1(Xi − X̄)2

∼exact tn−1.

Definition 6.1. Let Z1, ..., Zn ∼i.i.d. N(0, 1). Then

Y = Z2
1 + ...+ Z2

n ∼ χ2
n.

Note that E(Y ) = n and Var(Y ) = 2n.

Remark 6.2. The χ2
n distribution is also a special case of the Gamma distribution. Specifically, χ2

n ∼
Gamma(n2 , 2).

Definition 6.3. Let X,Z1, ..., Zn ∼i.i.d. N(0, 1). Then Y =
∑n
i=1 Z

2
i ∼ χ2

n. Then

X√
Y
n

∼ tn.

In fact, as long as X⊥Y and Y ∼ χ2
n and X ∼ N(0, 1), the expression above follows exactly the tn

distribution.

11



Remarks 6.4. 1. Since E(Y ) = n, by the Law of Large Numbers Y
n → 1. Hence X√

Y/n
→ N(0, 1) as

n→∞, i.e. the t-distribution converges in distribution to the standard normal.

2. The t1 = X
|Z1| distribution (t distribution with 1 degree of freedom) is called the Cauchy distribution.

• The Cauchy distribution has undefined expectation and variance. This is because the tails are so
fat that the integrals for the expectation + variance do not exist.

• The sample mean of iid Cauchy RVs is distributed according to the Cauchy distribution i.e.
X1, ..., Xn ∼i.i.d. Cauchy =⇒ X̄ ∼ Cauchy. Contrast this with X1, ..., Xn ∼i.i.d. N(0, 1) =⇒
X̄ ∼ N(0, 1

n ).

Theorem 6.5. Suppose X1, ..., Xn ∼i.i.d. N(µ, σ2). Then the following hold:

1. (CLT)
√
n(X̄−µ)
σ ∼ N(0, 1).

2. (Chi-square)
∑n
i=1(Xi−X̄)2

σ2 ∼ χ2
n−1.

3. (Independence) X̄ ⊥
∑n
i=1(Xi − X̄)2.

4. (T-distribution)
√
n(X̄−µ)√

1
n−1 ·

∑n
i=1(Xi−X̄)2

∼ tn−1.

Proof of (1). This follows immediately from the CLT.

Proof of (2). First, notice that for any X ∼ N(µ, σ2), X = µ + σZ, where Z ∼ N(0, 1). This also implies
that X̄ = µ+ σZ̄, where Z̄ = Z1+...+Zn

n and Z1, ..., Zn ∼i.i.d. N(0, 1). Hence,∑n
i=1(Xi − X̄)2

σ2
=

∑n
i=1((µ+ σZi)− (µ+ σZ̄))2

σ2

=

n∑
i=1

(Zi − Z̄)2.

Hence it suffices to just use standard normals. We now prove by induction. If n = 2, we have

2∑
i=1

(Zi − Z̄)2 =

(
Z1 − Z2√

2

)2

.

Since Z1−Z2√
2
∼ N(0, 1), we get our result for n = 2. Next, assume result (2) holds for m. Denote

Z̄m = Z1+...+Zm
m and Z̄m+1 = Z1+...+Zm+1

m+1 . Then

Z̄m+1 =
mZ̄m + Zm+1

m
=

m

m+ 1
Z̄m +

1

m+ 1
Zm+1.

12



Now, we have

m+1∑
i=1

(Zi − Z̄m+1)2

=

m∑
i=1

(Zi − Z̄m+1)2 + (Zm+1 − Z̄m+1)2

=

m∑
i=1

(Zi − Z̄m + Z̄m − Z̄m+1)2 + (Zm+1 − Z̄m+1)2

=

m∑
i=1

(Zi − Z̄m)2 +m(Z̄m − Z̄m+1)2 + 2

m∑
i=1

(Zi − Z̄m)(Z̄m − Z̄m+1) + (Zm+1 − Z̄m+1)2.

We see that

m∑
i=1

(Zi − Z̄m)(Z̄m − Z̄m+1) = (Z̄m − Z̄m+1)

m∑
i=1

(Zi − Z̄m)

= (Z̄m − Z̄m+1)(Z1 + ...+ Zm −mZ̄m) = 0.

Now, notice that Z̄m+1 = mZ̄m+Zm+1

m+1 . Therefore,

Z̄m − Z̄m+1 = Z̄m −
mZ̄m + Zm+1

m+ 1
=

1

m+ 1
· (Z̄m − Zm+1), and

Zm+1 − Z̄m+1 = Zm+1 −
mZ̄m + Zm+1

m+ 1
=

m

m+ 1
· (Zm+1 − Z̄m).

Hence, it follows that

m(Z̄m − Z̄m+1)2 + (Zm+1 − Z̄m+1)2 =
m

m+ 1
(Z̄m − Zm+1)2 =

(√
m

m+ 1
Z̄m − Zm+1

)2

.

Because Z̄m ∼ N(µ, σ
2

m ) and Zm+1 ∼ N(µ, σ2),
√

m
m+1 Z̄m−Zm+1 is also normally distributed with mean

0 and variance 1. Furthermore, both Z̄m and Zm+1 are independent from
∑m
i=1(Zi − Z̄m)2: the former by

part 3 of the theorem, and the latter by not appearing in the expression at all. Therefore, by the induction
hypothesis, we have

m+1∑
i=1

(Zi − Z̄m+1)2 =

m∑
i=1

(Zi − Z̄m)2

︸ ︷︷ ︸
∼χ2

m

+

(√
m

m+ 1
Z̄m − Zm+1

)2

︸ ︷︷ ︸
∼χ2

1

∼ χ2
m+1, as desired.

Proof of (3). We aim to prove the stronger claim that

X̄⊥

X1 − X̄
...

Xn − X̄


.

13



First, because it is the linear combination of (X1, ..., Xn)T , notice that
X̄

X1 − X̄
...

Xn − X̄

 is a (n+ 1)-dimensional Gaussian.

This is because all the entries in the random vector are linear combinations of X1, ..., Xn ∼i.i.d. N(µ, σ2).
(see Wikipedia). Next, we have

Cov

X̄,


X̄
X1 − X̄

...
Xn − X̄


 =

Cov(X̄,X1 − X̄)
...

Cov(X̄,Xn − X̄).


See that Cov(X̄,X1 − X̄) = Cov(X̄, X̄) − Cov(X̄,X1). First, Cov(X̄, X̄) = Var(X̄) = σ2

n . Second, we
have

Cov(X̄,Xi) = Cov

(
X1 + ...+Xn

n
,Xi

)
=

Cov(X1, Xi) + ...+ Cov(Xn, Xi)

n
=
σ2

n
.

Therefore,

Cov

X̄,


X̄
X1 − X̄

...
Xn − X̄


 = 0, so X̄⊥

X1 − X̄
...

Xn − X̄

 .

Proof of (4). By (1) and (2), we have that
√
n(X̄−µ)
σ ∼ N(0, 1) and

∑n
i=1(Xi−X̄)2

σ2 ∼ χ2
n−1. Because (1)’s

expression is a function of X̄, and (2)’s expression is a function of
∑n
i=1(Xi − X̄)2, it follows that

√
n(X̄ − µ)

σ
⊥
∑n
i=1(Xi − X̄)2

σ2
.

By definition of t distribution, it follows after cancelling the σs that

√
n(X̄ − µ)√

1
n−1 ·

∑n
i=1(Xi − X̄)2

∼ tn−1.

This allows us to come up with an exact confidence interval for µ when σ2 is unknown.

7 Hypothesis Testing

Definition 7.1. Suppose X1, ..., Xn ∼i.i.d. p(θ), where p(θ) is some distribution with θ ∈ Rk. Then a
hypothesis test consists of

1. a null and alternative hypothesis, H0 and H1 respectively,
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2. a test statistic T = T (X1, ..., Xn) that is a function of the data,

3. a rejection region R, and

4. a testing procedure that rejects H0 if T ∈ R.

Definition 7.2. The Type I error is P(T ∈ R | H0 is true), and the Type II error is P(T 6∈ R | H1 is true).
The power is P(T ∈ R | H1 is true).

The goal is to find a test such that the Type I error ≤ α, and the Type II error is small as
possible.

We begin with two examples.

Example 7.3. Suppose X1, ..., Xn ∼i.i.d. N(µ, 1), where µ is unknown. We set

H0 : µ = 0 and H1 : µ > 0.

Use X̄ as the test statistic. We want to reject the null if X̄ is too large i.e. X̄ > c for some threshold c.
The goal is to set this threshold such that P(X̄ > c | H0) = α. Under H0, we have that

√
nX̄ ∼ N(0, 1), so

P(X̄ > c | H0) = α ⇐⇒ c =
z1−α√
n
.

Example 7.4. Suppose X1, ..., Xn ∼i.i.d. N(µ, 1), where µ is unknown. We set

H0 : µ = 0 and H1 : µ 6= 0.

Use X̄ as the test statistic. We want to reject the null if X̄ is too large or too small i.e. |X̄| > c for
some threshold c. The goal is to set this threshold such that P(|X̄| > c | H0) = α. Under H0, we have that√
nX̄ ∼ N(0, 1), so

P(|X̄| > c | H0) = α ⇐⇒ c =
z1−α2√
n
.

Example 7.5. Suppose X1, ..., Xn ∼i.i.d. N(µ, σ2), where µ and σ2 are unknown. We set

H0 : µ = 0 and H1 : µ > 0.

Since σ2 is unknown, use the t-statistic instead for the test statistic, since we know that

T =

√
nX̄√

1
n−1

∑n
i=1(Xi − X̄)2

∼ tn−1.

We arrive at the conclusion by similar logic:

P(T > c | H0) = α ⇐⇒ c = tn−1,1−α.

If instead H1 : µ 6= 0, then using c = tn−1,1−α2 will ensure that the Type I error is α.

If the null is composite, then the idea is to find the rejection region by controlling for the worst possible
case under the null. In other words, if the set of parameters given by the null is N , then we want to find a
rejection region R such that

sup
θ∈N

P(Tθ ∈ R) ≤ α, where Tθ is a test statistic dependent on θ.

By controlling for the worst possible case, we effectively turn the composite case into a simple one.
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Example 7.6 (Composite null). Suppose X1, ..., Xn ∼i.i.d. N(µ, 1), and H0 : µ ≤ 0 | H1 : µ > 0. Then we
want to find a threshold c such that

sup
µ≤0

P(X̄µ > c) = α.

Given µ ≤ 0,
√
n(X̄µ − µ) ∼ N(0, 1). Hence we have

sup
µ≤0

P(X̄µ > c) = sup
µ≤0

P(
√
n(X̄ − µ) >

√
nc−

√
nµ)

= sup
µ≤0

P(N(0, 1) >
√
nc−

√
nµ).

Because we are only consider nonpositive µ, the probability is greatest when µ = 0. Therefore, we want
c such that

sup
µ≤0

P(X̄µ > c) = P(N(0, 1) >
√
nc) = α.

Hence, reject the null if X̄ > z1−α√
n

.
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7.1 Power

The power of a hypothesis test is defined as P(T ∈ R | H1) i.e. the probability of T falling in the rejection
region given that the alternative is true. Because T is dependent on the hypothesis, we set Tθ = T . Hence,
it’s possible to define P(Tθ ∈ R) as a function of θ, where θ is either in the null or the alternative. This
means that the Type I error can be interpreted as a special case of power.

Example 7.7. Suppose X1, ..., Xn ∼i.i.d. N(µ, 1), and H0 : µ = 0 | H1 : µ > 0. Reject the null if√
nX̄ > z1−α. Since

√
nX̄ ∼ N(

√
nµ, 1) where µ > 0 under the alternative, the power is

P(
√
nX̄ > z1−α) = P(N(

√
nµ, 1) > z1−α)

= P(N(0, 1) +
√
nµ > z1−α)

= P(N(0, 1) > z1−α −
√
nµ).

From the figure below, it is clear that the probability changes as a function of µ.

Hence, we can express the power as a function of µ i.e. P (µ) = P(N(0, 1) > z1−α−
√
nµ). Notice that as

we increase the sample size n, the movement of z1−α −
√
nµ becomes more sensitive for every movement of

µ. Therefore, as n → ∞, the power function becomes a step function, which is intuitive because we expect
the hypothesis test to work 100% of the time with an infinite amount of data points.
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7.2 Duality of Confidence Intervals and Hypothesis Tests

Confidence intervals are random intervals that have a 1− α probability of containing the true parameter θ.
In hypothesis testing, we define the rejection region such that the probability of falling inside the rejection
region is less than α, given the null hypothesis. This means that under the null, we are effectively given a
”true” parameter, and we design a rejection region that is based on this ”true” parameter.

Furthermore, confidence intervals should have 1 − α coverage, but we aim to make them as small as
possible. Similarly, hypothesis tests should have less than α Type I error, but we aim to make the Type II
error as small as possible also.

Example 7.8. Suppose X1, ..., Xn ∼i.i.d. N(µ, 1), and H0 : µ = µ∗ | H1 : µ 6= µ∗. Then under the null,√
n(X̄ − µ∗)→ N(0, 1). Hence, reject the null if |

√
n(X̄ − µ∗)| > z1−α2 . The Type I error is

P(|
√
n(X̄ − µ∗)| > z1−α2 ) = α ⇐⇒ P(|

√
n(X̄ − µ∗)| ≤ z1−α2 ) = 1− α.

This means that under the null, the interval
[
X̄ −

z1−α
2√
n
, X̄ +

z1−α
2√
n

]
has 1 − α coverage of µ∗. This

resembles the confidence interval of µ∗, because through the null, we’ve effectively been given a ”true”
parameter.

Example 7.9. Suppose X1, .., Xn ∼i.i.d. Poisson(λ), and H0 : λ = λ∗ | H1 : λ 6= λ∗. Under the null,
√
n(X̄−λ∗)√

λ∗
→ N(0, 1). Hence reject the null if

∣∣∣√n(X̄−λ∗)√
λ∗

∣∣∣ > z1−α2 . The Type I error is

P
(∣∣∣∣√n(X̄ − λ∗)√

λ∗

∣∣∣∣ > z1−α2

)
≈ α ⇐⇒ P

(∣∣∣∣√n(X̄ − λ∗)√
λ∗

∣∣∣∣ ≤ z1−α2

)
≈ 1− α.

This resembles the CI obtained from Wilson’s method, since the denominator contains the ”true” pa-
rameter λ∗ under the null.

7.3 p-value

As far as convenience is concerned, you have to keep track of several numbers when doing a hypothesis test:
the α level and the rejection region threshold(s). Wouldn’t it just be easier to combine the two i.e. reject
the null when the test statistic is less than α?

Theorem 7.10. Suppose X is a random variable with CDF F (t) = P(X ≤ t). Let Y = F (X). Then
Y ∼ Uniform[0, 1].
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Proof. P(Y ≤ t) = P(F (X) ≤ t) = P(X ≤ F−1(t)) = F (F−1(t)) = t, so Y ∼ Uniform[0, 1] .

Example 7.11. Suppose X1, ..., Xn ∼ N(µ, 1) with H0 : µ = 0 | H1 : µ > 0. We reject the null if√
nX̄ > z1−α. Note that

√
nX̄ ∼ N(0, 1). Therefore, if F is the CDF of the standard normal, then we reject

the null if F (−
√
nX̄) < α. In other words,

√
nX̄ > z1−α ⇐⇒ −

√
nX̄ < zα = F−1(α)

⇐⇒ F (−
√
nX̄) < α.

Example 7.12. Suppose X1, ..., Xn ∼ N(µ, 1) with H0 : µ = 0 | H1 : µ 6= 0. We reject the null if
|
√
nX̄| > z1−α2 . Note that

√
nX̄ ∼ N(0, 1). Define F (t) = P(−|

√
nX̄| ≤ t). Then we reject the null if

F (−|
√
nX̄|) < α. In other words,

−|
√
nX̄| > z1−α2 = F−1(α) ⇐⇒ F (−|

√
nX̄|) < α.

*Multiple Testing

Suppose we have the following scenario: you have n drugs, and you want to test the significance of each
drug. For the ith drug, you construct a p-value pi. Then, since p-values are defined to be uniform only
under the null, then the ith null hypothesis is H0i : pi ∼ Uniform[0, 1].

We have two questions:

1. Is there a significant drug? This is a binary question, and we can approach this question with the
traditional hypothesis test.

2. Which ones are significant? This is non-binary, so we’ll have to come up with another formulation
of hypothesis testing.

Is there a significant drug?

We can construct a global null:

H0 :

n⋂
i=1

H0i = every pi ∼ Uniform[0, 1].

This way, a rejection of the null means that there exists a significant drug. There are two possible tests:

• Bonferroni test (no conditions). Reject the null if there exists i such that pi <
α
n .

We show that this test does control the Type I error. Recall that P (
⋃n
i=1Ai) ≤

∑n
i=1 P(Ai). We have

P(Reject the null | H0) = P(∃i s.t. pi <
α

n
| H0)

= P(p0 <
α

n
or ... or pn <

α

n
| H0)

≤
n∑
i=1

P(pi <
α

n
| H0)

≤
n∑
i=1

α

n
= α (because pi ∼ Uniform[0,1] under null)

• Simes test (independence assumed). If p1, ..., pn are independent, then reject the null if

min
1≤i≤n

np(i)

i
≤ α, where p(i) is the ith order statistic.
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The Simes test is based on the Simes theorem: If U1, ..., Un ∼i.i.d. Uniform[0, 1], then

min
1≤i≤n

nU(i)

i
∼ Uniform[0, 1].

To show that this test controls the Type I error, we have from the Simes theorem that

P(Reject the null | H0) = P
(

min
1≤i≤n

np(i)

i
≤ α | H0

)
≤ α.

With the extra condition of independence, the Simes test is actually more powerful than the Bonferroni
test. Why? The rejection condition gives

min
1≤i≤n

np(i)

i
≤ α ⇐⇒ ∃i s.t.

np(i)

i

⇐⇒ ∃i s.t. p(i) ≤
α · i
n
.

The ”rejection region” isn’t as restricted as Bonferroni’s, so Simes does have greater power.

Which drugs are significant?

We need a way to re-construct the structure of the hypothesis test from variability, since there are literally
2n possible binary hypotheses we could make. Construct two sets I0, I1 ⊂ {1, ..., n}

I0 = {i | H0i is true}
I1 = {i | H0i is not true}.

In particular, I0, I1 reflect which drugs are actually significant, whereas our rejection (or non-rejection)
aims to find I0, I1. We summarize this in our table:

reject no reject
I0 false rejection
I1 false acceptance

In the traditional hypothesis test, we aim to control the Type I error, and try to keep the Type II error
as low as possible. Analogously, we need to aim to control the “false rejection” numbers, and keep the
“false acceptance” numbers as low as possible. This leads to an analogous notion of the Type I error: the
family-wise error rate (FWER).

Definition 7.13. The family-wise error rate is an analog of Type I error for multiple testing. It is

FWER = P(∃false discovery)

= P(∃i ∈ I0 s.t. H0i is rejected).

The goal is then to control the FWER.

• Bonferroni test (no conditions) Reject H0i if pi <
α
n .
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This test controls the FWER:

FWER = P(∃i ∈ I0 s.t. H0i is rejected)

= P(∃i ∈ I0 s.t. pi <
α

n
)

≤
∑
i∈I0

P(pi <
α

n
)

=
#(I0) · α

n
≤ α. (I0 is exactly the set where pi ∼ Uniform[0, 1])

• Holm test (no conditions).

• Hochberg test (independence assumed).

The FWER is pretty restrictive, however. Controlling for it means controlling the probability of any false
discovery at all. From the table, define V, V1, R

reject no reject
I0 V
I1 V1

and R = V + V1.

Definition 7.14 (False discovery rate (FDR)). A less stringent analog to Type I error than FWER, the
FDR is defined

FDR = E
(

V

max(R, 1)

)
.

Proposition 7.15. FDR ≤ FWER. In other words, FWER is more stringent than FDR.

Proof.

FDR = E
(

V

max(R, 1)

)
= E

(
V

max(R, 1)
(1V >0 + 1V=0)

)

= E
(

V

max(R, 1)
· 1V >0

)
+ E

 V

max(R, 1)
· 1V=0︸ ︷︷ ︸

=0



= E

 V

R︸︷︷︸
≤1

·1V >0

 ≤ E(1V >0) = P(V > 0) = FWER.

One test for multiple testing using FDR is the Benjamin-Hochberg procedure: order independent p1, ..., pn
into p(1) ≤ ... ≤ p(n). The first time p(j) ≤ j·α

n , reject H0(1), ...,H0(j). It can be shown that under
independence, we can control the FDR i.e. FDR ≤ α.

21



8 Linear Regression

8.1 Univariate Linear Regression

Suppose we have independent yi ∼ N(β0 + β1xi, σ
2) for i = 1, ..., n. Note that this is equivalent to saying

that for yi = β0 + β1xi + σzi, where zi ∼i.i.d. N(0, 1). Keep in mind that here, the xi’s are not random.

Proposition 8.1. The MLEs for (β0, β1) are

β̂0 = ȳ − β̂1X̄, and

β̂1 =
1
n

∑n
i=1(Xi − X̄)(yi − ȳ)

1
n

∑n
i=1(Xi − X̄)2

.

Proof. Follows from painful algebra-crunching. Something to note is that maximizing the likelihood in this
case is equivalent to minimizing

∑n
i=1(yi − β0 − β1xi)

2 i.e. minimizing the least squared error.

Proposition 8.2. The MLEs (β̂0, β̂1) are unbiased estimators.
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Proposition 8.3. The variances of (β̂0, β̂1) are

Var(β̂1) =
σ2∑n

i=1(Xi − X̄)2
=
σ2

n
· 1

1
n

∑n
i=1(Xi − X̄)2

Var(β̂0) =
σ2

n
+

σ2 · X̄2∑n
i=1(Xi − X̄)2

=
σ2

n

(
1 +

X̄2

1
n

∑n
i=1(Xi − X̄)2

)
.

Proof. Pure calculation. For Var(β̂0), realize that Cov(ȳ, β̂1) = 0.

Remark 8.4. Note that β̂1 gives the slope of the estimator line. We can an observation from the expression
of Var(β̂1). Looking at the expression, σ2 is the noise level of the error terms, n is the sample size, and
1
n

∑n
i=1(Xi−X̄)2 is the variability of the x’s. This means that the more “spread out” the x’s are, the smaller

the variance of β̂1 will be. In other words, wider and more diverse data makes the slope easier to discern.

Proposition 8.5. The covariance of β̂0, β̂1 is

Cov(β̂0, β̂1) = − σ2 · X̄∑n
i=1(Xi − X̄)2

.

Theorem 8.6. Suppose yi ∼ind. N(β0 + β1xi, σ
2) for i = 1, ..., n. Then

1.

[
β̂1

β̂0

]
∼ N

([
β0

β1

]
,

[
Var(β̂1) Cov(β̂0, β̂1)

Cov(β̂0, β̂1) Var(β̂0)

])
.

2.

∑n
i=1(yi − β̂0 − β̂1xi)

2

σ2
∼ χ2

n−2.

3.

n∑
i=1

(yi − β̂0 − β̂1xi)
2 ⊥

[
β̂1

β̂0

]
.

4. All kinds of t statistics, e.g.
β̂1 − β1√

1∑n
i=1(Xi−X̄)2

· 1
n−2

∑n
i=1(yi − β̂0 − β̂1xi)2

∼ tn−2.

Proof. Notice that Y = [y1, ..., yn]T is Gaussian. Since β̂0, β̂1 are both linear combinations of y1, ..., yn, they

are joint Gaussian. This gives (1). Even further, any linear combination of β̂0, β̂1 is also joint Gaussian.

This means that Y ∗ = [β̂0 + β̂1x1, ..., β̂0 + β̂1xn]T is also Gaussian. This gives the rest of the results.

Essentially, the Gaussian-ness of Y enables us to show all the results.
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Inference on the prediction Suppose we want to predict the response for some new x∗. Our candidate
is y = β0 + β1x

∗, while our prediction is y∗ = β̂0 + β̂1x
∗. Let’s try to construct a confidence interval for y.

First, notice that y∗ is Gaussian distributed, since [β̂1, β̂0]T is Gaussian. To compute the expectation
and variance of y∗, we have

E(y∗) = β0 + β1x
∗

Var(y∗) =
σ2

n
+

σ2∑n
i=1(Xi − X̄)2

(x∗ − X̄)2.

Therefore, y∗ ∼ N
(
β0 + β1x

∗, σ
2

n + σ2∑n
i=1(Xi−X̄)2

(x∗ − X̄)2
)

. To construct a confidence interval for y,

we divide into the familiar two cases on the knowability of σ2:

1. If σ2 is known, then use

y∗ ∼ N
(
β0 + β1x

∗,
σ2

n
+

σ2∑n
i=1(Xi − X̄)2

(x∗ − X̄)2

)
.

2. If σ2 is unknown, then use

y∗ − y√√√√√
 1
n +

(x∗ − X̄)2∑n
i=1(Xi−X̄)2

( 1
n−2

∑n
i=1(yi − β̂0 − β̂1xi)2

) ∼ tn−1.

The critical insight is the boxed term (x∗ − X̄)2. Notice that the further x∗ is from the sample mean,
the wider the confidence interval gets. This makes sense: the area closest to the sample mean will have
the densest amount of information, and thus more information is available to make the confidence interval
smaller.

8.2 Multivariate Linear Regression

Suppose yi = β0 + β1xi,1 + ... + βp−1xi,p−1 + σzi, where zi ∼i.i.d. N(0, 1) for i = 1, ..., n. We can express
these yi’s succinctly asy1

...
yn


︸ ︷︷ ︸
y

=

1 x1,1 x1,2 · · · · · · x1,p−1

...
...

...
...

...
1 xn,1 xn,2 · · · · · · xn,p−1


︸ ︷︷ ︸

X

 β0

...
βp−1


︸ ︷︷ ︸

β

+σ

z1

...
zn


︸ ︷︷ ︸
z

, i.e. y = Xβ + σz.

Note that y ∼ N(Xβ, σ2Idn). We can try to find the MLE for β. In particular, we have

MLE = argmaxβ

(
1√

2πσ2

)n
e−

1
2σ2
||y−Xβ||2 = argminβ ||y −Xβ||2.

Theorem 8.7. The projection β̂ = (XTX)−1XT y is the MLE/LSE for β. In particular, β̂ gives the least

possible value for ||y −Xβ||2 i.e. for any β ∈ Rp, ||y −Xβ̂||2 ≤ ||y −Xβ||2.

24



Proof. Let β ∈ Rp. We have

||y −Xβ||2 = ||y −Xβ̂ +Xβ̂ −Xβ||2

= ||y −Xβ̂||2 + ||Xβ̂ −Xβ||2 + 2〈y −Xβ̂,Xβ̂ −Xβ〉.

It can be shown that 〈y−Xβ̂,Xβ̂−Xβ〉 = 0, which makes sense since y−Xβ̂ is orthogonal to X(β̂−β).
Therefore,

||y −Xβ||2 = ||y −Xβ̂||2 + ||Xβ̂ −Xβ||2 ≥ ||y −Xβ̂||2.

Theorem 8.8. β̂ ∼ N(β, σ2(XTX)−1).

Proof. Since y ∼ N(Xβ, σ2In) is Gaussian, and β̂ is just a linear transformation applied to y, it is also
normally distributed. Now,

E(β̂) = (XTX)−1XTE(y) = (XTX)−1XT (Xβ) = β, and

Cov(β̂) = (XTX)−1XTCov(y)(XTX)−1XT

= σ2(XTX)−1XT In(XTX)−1XT

= σ2(XTX)−1.

Lemma 8.9. Suppose Z ∼ N(0, In), and P is a projection matrix of rank r. Then ||PZ||2 ∼ χ2
r.

Proof. Considering the eigenvalue decomposition P = UΛUT and setting W = UTZ,

||PZ||2 = (PZ)T (PZ) = ZTPTPZ = ZTPZ = (UTZ)TΛ(UTZ) = WTΛW.

If WT = [w1 · · ·wn], then note that W = UTZ ∼ N(0, In), so

WTΛW = w2
1 + ...+ w2

r , and w1, ..., wr ∼i.i.d. N(0, 1).

Therefore, ||PZ||2 ∼ χ2
r.

Theorem 8.10 (Multivariate Sampling Theorem). Suppose y ∼ N(Xβ, σ2In). Then the following hold:

1. β̂ ∼ N(β, σ2(XTX)−1).

2.
||y −Xβ̂||2

σ2
∼ χ2

n−p.

3. β̂ and y −Xβ̂ are independent.

4. All kinds of t-statistics.

Proof of (2). Because y ∼ N(Xβ, σ2In), we can write y = Xβ + σZ where Z ∼ N(0, In). Therefore

y −Xβ̂ = y −X(XTX)−1XT y

= (In −X(XTX)−1XT )y

= (In −X(XTX)−1XT )(Xβ + σZ) = (In −X(XTX)−1XT )(σZ).
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This means that

||y −Xβ̂||2

σ2
= ||(IN −X(XTX)−1XT )Z||2.

We already know that In−X(XTX)−1XT is a projection matrix, so the lemma above gives that ||(In−
X(XTX)−1XT )Z||2 is chi-square distributed. It remains to find the degrees of freedom. We have

Tr(In −X(XTX)−1XT ) = Tr(In)− Tr(X(XTX)−1XT )

= n− Tr((XTX)−1XTX) = n− p.

Hence
||y −Xβ̂||2

σ2
∼ χ2

n−p.

Proof of (3). Since both β̂ and y −Xβ̂ are both linear combinations of y, (β̂, y −Xβ̂) is joint Gaussian. It
then suffices to show that the covariance is zero. Therefore,

Cov(β̂, y −Xβ̂) = Cov((XTX)−1XT y, y −X(XTX)−1XT y)

= (XTX)−1XTCov(y)(In −X(XTX)−1XT )T

= σ2(XTX)−1XT In(In −X(XTX)−1XT )

= σ2(XTX)−1(XT −XT ) = 0.

Proof of (4). Follows from (1), (2), and (3).

8.3 Hypothesis Testing

Suppose our regular model y ∼ N(Xβ, σ2In). We want to test if any of the regression coefficients are
significant. Fashion the hypotheses:

H0 : β1 = · · · = βp−1 = 0 ⇐⇒ yi = β0 + σzi, where zi ∼i.i.d. N(0, 1)

H1 : otherwise ⇐⇒ yi = β0 + β1xi,1 + ...+ βp−1xi,p−1 + σzi, where zi ∼i.i.d. N(0, 1).

To gain some intuition for these hypotheses, consider these exercises:

• Assume H0 is true. Then yi ∼i.i.d. N(β0, σ
2), which means that the MLE/LSE of β0 is ȳ. This is to

say that [ȳ, ..., ȳ]T = 1
n1n1

T
ny is the best “fit” for [y1, ..., yn]T that the model under H0 spits out.

• Assume H1 is true. Then we calculated that

ŷ = Xβ̂ = X(XTX)−1XT︸ ︷︷ ︸
=H

y is the best fit for [y1, ..., yn]T .

Keep in mind that in any case, β̂ gives the least distance from the column space of X and y.

The intuition is that if H0 is true, then we expect 1
n1n1

T
ny and ŷ to be “close” together. But if instead

H1 is true, then they should “far” apart.
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Definition 8.11. Qualifications of variance depending on H0 and H1:

TSS =

n∑
i=1

(yi − ȳ)2 = ||y − 1

n
1n1

T
ny||2,

RSS =

n∑
i=1

(yi − ŷi)2 = ||y − ŷ||2,

MSS =

n∑
i=1

(ŷi − ȳ)2 = ||ŷ − 1

n
1n1

T
ny||2.

In hypothesis testing, we start with assuming that the null is true, then see if the data gives us enough
evidence to reject the null. In line with this reasoning and the intuition outlined above, take a look at the
TSS. It tells how far apart y and 1

n1n1
T
ny are. We can further break down the TSS with the following

lemma.

Lemma 8.12. TSS = RSS + MSS.

Proof. Follows by recognizing that HX = X(XTX)−1XTX = X. Can also be proved by noting that 1
n1n1

T
n

is in the column space of X, so we can just apply Theorem 8.7.

Definition 8.13 (F-distribution). Suppose Y1 ∼ χ2
d1

, Y2 ∼ χ2
d2

, and Y1⊥Y2. Then

Y1/d1

Y2/d2
∼ Fd1,d2 .

Theorem 8.14. Suppose y ∼ N(Xβ, σ2In). Then the following hold:

1. TSS = RSS + MSS.

2. RSS⊥MSS

3.
RSS

σ2
∼ χ2

n−p.

4. Under H0,
MSS

σ2
∼ χ2

p−1.

5. Under H0,
TSS

σ2
∼ χ2

n−1.

6. Under H0,
MSS/(p− 1)

RSS/(n− p)
∼ Fp−1,n−p.

Proof of (1). Follows from the lemma above.

Proof of (2). Follows from showing that y − ŷ ⊥ ŷ − 1
n1n1

T
ny via showing that

Cov

(
y − ŷ, ŷ − 1

n
1n1

T
ny

)
= 0.

Proof of (3). Follows from Theorem 8.10.
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Proof of (4). We have that

MSS

σ2
=
||(H − 1

n1n1
T
n )y||2

σ2

=
||(H − 1

n1n1
T
ny)(β01n + σZ)||2

σ2
(where Z ∼ N(0, In))

= ||(H − 1

n
1n1

T
n )Z||2.

Once it is shown that (H − 1
n1n1

T
n )Z is a projection, the result follows from Lemma 8.9.

Proof of (5). Follows from Theorem 8.10(2).

Proof of (6). Follows by definition of F -distribution.

With this theorem, we can now apply our intuition regarding the “closeness” of ȳ and 1
n1n1

T
ny and its

relationship to the strength of H0 or H1. We construct the hypothesis test:

Reject H0 when
MSS/(p− 1)

RSS/(n− p)
> Fp−1,n−p,1−α.

It’s important to realize here that RSS essentially remains fixed, since ŷ is the best possible fit for y given
any circumstance. Furthermore, it serves as a substitute for σ2. If instead σ2 is known, then we can just
leverage (4) in the theorem above.

28



A Primer on projections

Definition A.1. A matrix P ∈ Rn×n is called a projection matrix if PT = P and P 2 = P .

Example A.2. Let 1n = (1, ..., 1)T ∈ Rn. Then 1
n1n1

T
n is a projection matrix. For some y = (y1, ..., yn),

then

1

n
1n1

T
ny =

(
1

n

n∑
i=1

yi

)
1n = (ȳ, ..., ȳ)T .

This explains why ȳ is the MLE of µ in the case of y1, ..., yn ∼i.i.d. N(µ, σ2).

Proposition A.3. Let P be a projection matrix.

1. In − P is a projection.

2. P (In − P ) = 0 and (In − P )P = 0.

3. The eigenvalues of P must be either 0 or 1.

Proof.

1. (In − P )T = ITn − PT = In − P and (In − P )2 = In − P , so In − P is a projection.

2. Easy to see considering P 2 = P .

3. Since P is symmetric, we can write P in its eigenvalue decomposition i.e.

P = UΛUT , where Λ is diagonal and UTU = UUT = In.

The diagonal of Λ consists of the eigenvalues. Then

P 2 = UΛUTUΛU = UΛ2UT = UΛUT = P.

From this,

UTUΛ2UTU = UTUΛUTU =⇒ Λ2 = Λ.

Hence all the eigenvalues of P must be either zero or one.

Theorem A.4. Let P be a projection matrix. Suppose the eigenvalue decomposition

P = UΛUT , where Λ = diag{1, ..., 1, 0, ..., 0}.

Then P can be written as

P =

rank(P )∑
i=1

uiu
T
i , where ui are eigenvectors corresponding to nonzero eigenvalues.

Proof. Clear by working through the eigenvalue decomposition.

Proposition A.5. If P1, P2 are projections and P1P2 = 0 i.e. they are orthogonal projections, then P1 +P2

is a projection.
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Proof. Intuitively, this makes sense because you are effectively mapping onto a combination of orthogonal
“planes”. Clearly (P1 + P2)T = P1 + P2, and

(P1 + P2)2 = P 2
1 + P 2

2 + P1P2 + P2P1

= P1 + P2 + 0 + (P1P2)T = P1 + P2.

Proposition A.6. If P is a projection matrix, then rank(P ) = Tr(P ).

Proof. Since P is symmetric, we can write in eigenvalue decomposition i.e. P = UΛUT . Recalling that
Tr(BA) = Tr(AB), we have

Tr(P ) = Tr(UΛUT ) = Tr(ΛUTU) = Tr(Λ).

Since Λ is just a “truncated” identity matrix per se, Tr(Λ) = rank(P ).
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