
STAT 34300 - Review

Solutions

Exercise 1: The moment assumptions of linear
regression are?

Solution 1:

1. E(Y |X) = Xβ or Yi = Xiβ + εi where
E(εi) = 0.

2. Var(εi) = σ2 for all i, so variance does not
depend on X.

3. All the εi’s are all independent from one
another, or at least uncorrelated.

Exercise 2: The normality assumption(s) of
linear regression is/are?

Solution 2: Y ∼ N(Xβ, σ2I), which implies
all the moment assumptions.

Exercise 3: What is the RSS? TSS?

Solution 3:

1. RSS = ||Y −Xβ||22 =
∑n
i=1(Yi −Xiβ)2.

2. TSS =
∑n
i=1(Yi − Y )2.

Exercise 4: In 1-dimensional regression, what
is β̂0, β̂1, σ̂

2?

Solution 4:

1. β̂0 = Ȳ − β̂1X̄,

2. β̂1 =
∑
i(Xi−X̄)(Yi−Ȳ )∑

i(Xi−X̄)2
= Cov(X,Y )

Var(X)
=

Corr(X,Y ) · STD(Y )
STD(X)

.

3. σ̂2 = 1
n−2

∑n
i=1(Yi − (β̂0 + β̂1Xi))

2.

Exercise 5: What do the moment / normality
assumptions tell you about the estimators in 1-
dimensional regression?

Solution 5:
Under the moment assumptions:

1. Eβ̂0 = β0,Eβ̂1 = β1,Eσ̂2 = σ2.

2. Var(β̂0) = σ2
(

1
n

+ X̄2∑
i(Xi−X̄)2

)
.

3. Var(β̂1) = σ2∑
i(Xi−X̄)2

4. Cov(β̂0, β̂1) = −σ2 · X̄∑
i(Xi−X̄)2

.

5. β̂⊥σ̂2.

Under the normality assumptions:

1. β̂ ∼ N

(
β, σ2

[
1
n

+ X̄2∑
i(Xi−X̄)2

− X̄∑
i(Xi−X̄)2

− X̄∑
i(Xi−X̄)2

1∑
i(Xi−X̄)2

])
.

2. (n− 2) · σ̂
2

σ2 ∼ χ2
n−2.

3. β̂⊥σ̂2.

Exercise 6: (1-dimensional regression) Con-
duct a z-test and t-test for β̂1.

Solution 6:
If the variance is known, then

β̂1 − β1√
σ2∑

i(Xi−X̄)2

∼ N(0, 1).

Under the null hypothesis (β1 = 0), the 1 − α
confidence interval is

β̂1 ± z1−α/2 ·

√
σ2∑

i(Xi − X̄)2
.

If the variance is unknown, then

β̂1 − β1√
σ2∑

i(Xi−X̄)2

∼ N(0, 1) and (n− 2) · σ̂
2

σ2
∼ χ2

n−2.
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This means that

β̂1−β1√
σ2∑

i(Xi−X̄)2√
(n−2)· σ̂2

σ2

n−2

=
β̂1 − β1

σ̂√∑
i(Xi−X̄)2

=
β̂1 − β1

SE(β̂1)
∼ tn−2.

Under the null hypothesis (β1 = 0), the 1 − α
confidence interval is

β̂1 ± t1−α/2 · SE(β̂1).

Exercise 7: (1-dimensional regression) Con-
struct a confidence interval for the mean Y value
for individuals with X = x.

Solution 7:
The mean Y value with X = x is estimated to be
µ̂ = β̂0 + β̂1x. Under the normality assumptions,
we have

µ̂ ∼ N
(
β0 + β1x, σ

2

(
1

n
+

(x− X̄)2∑
i(Xi − X̄)2

))
.

Exercise 8: (1-dimensional regression) Con-
struct a prediction interval for a new y at a par-
ticular x value.

Solution 8:
A new y value at x has the following form under
the model: y = β0 + β1x+ ε, where ε ∼ N(0, σ2).
This means

y − ŷ = (β0 + β1x+ ε)− (β̂0 + β̂1x)

∼ N
(

0, σ2

(
1 +

1

n
+

(x− X̄)2∑
i(Xi − X̄)2

))
.

Exercise 9: In p-dimensional regression, what
is β̂, σ̂2?

Solution 9:

1. β̂ = (XTX)−1XTY .

2. σ̂2 =
||Y−Xβ̂||22

n−p .

Exercise 10: What do the normality as-
sumptions tell you about the estimators in p-
dimensional regression? Justify your findings.

Solution 10:

1. β̂ ∼ N(β, σ2(XTX)−1)

2. (n− p) · σ̂2/σ2 ∼ χn−p
3. β̂⊥σ̂2

Exercise 11: In p-dimensional regression, what
is the interpretation of βj?

Solution 11:
All things held constant, increasing the jth co-
variate by one unit will lead to a βj increase in
the Y value.

Exercise 12: Explain what might happen if co-
variates are highly correlated. Construct an ex-
ample of

• If you fit a linear model of Y on covariate
X1 only, then the fitted slope is generally
negative, but

• if you fit a linear model of Y on both co-
variates X1 and X2, then the coefficient β̂1

on X1 is generally positive.

Solution 12:
If covariates are highly correlated, then one co-
variate could stand in as a proxy for another.

Exercise 13: Show that H = X(XTX)−1XT is
a projection matrix, and interpret the projection.
Interpret I −H.

Solution 13:

H2 = X(XTX)−1XTX(XTX)−1XT = H and HT = H.

The projection H projects the Y vector onto the
subspace spanned by X. On the other hand, I −
H projects onto the orthogonal space of X; the
residual vector is the projection onto this space.

Exercise 14: Give the definition of χ2
p distribu-

tion.

Solution 14:
If X1, · · · , Xp ∼i.i.d. N(0, 1), then X2

1 +· · ·+X2
p ∼

χ2
p.

2



Exercise 15: Give the definition of tk distribu-
tion.

Solution 15:
If Z ∼ N(0, 1) and V ∼ χ2

k, then Z√
V/k
∼ tk.

Exercise 16: True or False:

1. Z ∼ N(0, Im) if and only if
Z1, · · · , Zm ∼i.i.d. N(0, 1)

2. Z ∼ N(µ,Σ) if and only if vTZ ∼
N(vTµ, vTΣv) for any v ∈ Rn.

3. If Z ∼ N(µ,Σ) and A, b are fixed, then
AZ + b ∼ N(Aµ+ b, AΣZT ).

Solution 16:
All are true.

Exercise 17: Prove that if Z ∼ N(0, Im), A ∈
Rk×m, B ∈ Rl×m with ABT = 0, then AZ⊥BZ.

Solution 17:
Write the block matrix [ATBT ]T . We have(
A

B

)
Z ∼ N

(
0,

[
AAT ABT

BAT BBT

])
= N

(
0,

[
AAT 0

0 BBT

])
.

Exercise 18: (p-dimensional regression) Con-
duct a z-test and t-test for vT β̂ for some fixed
vector v.

Solution 18:
Because β̂ ∼ N(vTβ, σ2(XTX)−1), we have
vTβ ∼ N(vT β̂, σ2vT (XTX)−1v). This gives the
confidence interval

vT β̂ ± z1−α/2 · σ
√
vT (XTX)−1v.

For the t-test, since (n−p)σ̂2/σ2 ∼ χ2
n−p, we have

vT β̂ − vTβ
σ̂
√
vT (XTX)−1v

=
vT β̂ − vTβ
SE(vT β̂)

∼ tn−p.

This gives the confidence interval

vT β̂ ± t1−α/2 · σ̂
√
vT (XTX)−1v.

Exercise 19: (p-dimensional regression) Con-
struct a confidence interval for the mean Y value

for individuals with X = x.

Solution 19:
Use the above, but use v = x.

Exercise 20: (p-dimensional regression) Con-
struct a prediction interval for a new y at a par-
ticular x value.

Solution 20:
From the model, y = xTβ + ε, where ε ∼ N(0, 1).
This means

y − ŷ = xTβ + ε− xtβ̂

∼ N(0, σ2(1 + xT (XTX)−1x))⊥σ̂2.

The prediction interval is given by ŷ ± t1−α/2 ·
σ̂
√
xT (XTX)−1x.

Exercise 21: Explain R2 and adjusted R2.
What are the expressions for both, and why might
adjusted R2 be better?

Solution 21:
R-squared is how much the total variance of Y
is explained by the linear model. Intuitively, if
the model is a perfect linear fit to the data, then
the R-squared should be close to one because the
model perfectly explains the variance of Y .

Adjusted R-squared is how much the total vari-
ance of Y is explained by the linear model, ad-
justed for the number of parameters in the model.
Intuitively, as the number of parameters goes to
∞, the vanilla R-squared should approach one be-
cause more parameters are always better from a
pure fitting perspective.

R2 =
||Ŷ − Ȳ ||2

||Y − Ȳ ||2
= 1− RSS

TSS

R2
adj = 1−

1
n−pRSS

1
n−1

TSS
= 1− σ̂2

V̂ar(Y )
.

Exercise 22: What is the F distribution? What
is the F-test?

Solution 22:
If X1 ∼ χ2

a and X2 ∼ χ2
b and X1⊥X2, then

X1/a
X2/b

∼ Fa,b.
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The F-test tests the significances of a subset of
covariates. For example, we might want to test
with the null hypothesis of βj1 = · · · = βjk = 0.
Under the null hypothesis,

(RSSreduced −RSSfull)/k

RSSfull/n− p
∼ Fk,n−p.

We should reject the null if the test statistic is
large, since this means that the RSS of the re-
duced model is substantially larger.

Exercise 23: Give conceptual definitions for (1)
outlier, (2) high leverage point, (3) influential
point. How do you detect outliers? How do you
calculate leverage? How can make decisions about
whether or not a point is influential?

Solution 23:
An outlier is a point that strays away from the
trend in the Y space - it is a comparative defini-
tion that depends on the model that we use. A
high leverage point is a point that lies far away
in the X space - it is a point that is far from the
mean of X. An influential point is a point that
makes a large difference in the model.

Outliers can be detected by using studentized
residuals and the Bonferroni correction. Let β̂(i)

be the LSE fitted without point i. If X(i) is the
design matrix with the ith row removed, then

β̂(i) ∼ N(β, σ2(XT
(i)X(i))

−1).

Then

Yi −XT
i β̂(i) ∼ N(0, σ2(1 +XT

i (XT
(i)X(i))

−1)).

The test statistic is

Yi −XT
i

σ̂
√

1 +XT
i (XT

(i)X(i))−1
∼ tn−p−1.

Do this for all i, and test against the Bonferroni
correction α/n.

Leverage is calculated with the following. Let H
be the projection matrix. Then Hii is the leverage
score for point (Xi, Yi). This is because

Var(ε̂) = Var((I −H)Y )

= Var((I −H)(Xβ + ε))

= Var((I −H)ε)

= σ2(I −H),

which means that if Hii is large, then ε̂i is small,
which means that the model is overfitting towards
the ith point.

To detect influential points, try fitting the model
with and without an outlier/high leverage point.
If the line fit changes substantially, then we can
have reasonable confidence that we have an in-
fluential point. Problems may arise if there are
multiple suspect influential points that are near
each other. We can report our results with and
without influential points, use bootstrap, or use
robust regression methods.

Exercise 24: What are (1) bootstrapping the
sample and (2) boostrapping the residual? How
do (1) and (2) behave with relation to

1. Heavy tailed / skewed noise distribution?

2. Nonconstant variance?

3. Nonlinear trends?

4. Leverage points / influential points?

Solution 24:
Bootstrapping the sample is sampling n points
from the dataset with replacement.

Bootstrapping the residual is

1. Fitting a model to the data to get Y = Xβ̂
and residuals E = {ε̂1, · · · , ε̂n}.

2. Creating n data points of the form Yk =
XT
k β̂ + ε̂k, where the error term is sampled

without replacement from E.

With heavy tailed / skewed noise distribution,
both bootstrapping methods should suffice.

With nonconstant variance, bootstrapping the
sample is better than bootstrapping the residu-
als. For example, if the variance gets larger as
the X value grows, bootstrapping the residuals
may wrongly assign a small residual term for a
large X point.

With nonlinear trends, bootstrapping the sample
is better because bootstrapping the residual as-
sumes a linear model a priori.

For leverage points / outlier points, bootstrapping
the sample is better because we can get a better
estimate of the standard errors of the coefficient
estimates. Bootstrapping the residuals may get
rid of the exact outlier-ness / high leverage-ness
of the point altogether, whereas bootstrapping the
sample will create samples that have or do not
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have the problem point.

Exercise 25: Explain how bootstrap might be
used for standard error estimation of β̂j .

Solution 25:
Bootstrap the sample k times, collect the coeffi-
cient estimates from each generated sample, and
collect the standard errors of these coefficient es-
timates.

Exercise 26: Why do we want our model to not
be too large? Why do we want our model to not
be too small?

Solution 26:
The bias-variance tradeoff. Smaller models tend
to have higher bias, whereas larger models tend
have higher variance.

(Smaller means higher bias.) Suppose
X−j is the design matrix with the covariate Xj
removed. Suppose β−j is the coefficients without
the jth coefficient. Then

E(β̂−j) = (XT
−jX−j)

−1XT
−jE(Y )

= (XT
−jX−j)

−1XT
−jXβ

= (XT
−jX−j)

−1XT
−jX−jβ−j

+ (XT
−jX−j)

−1XT
−jXjβj

= βj + (XT
−jX−j)

−1XT
−jXjβj 6= βj .

(Larger means higher variance.) Sup-

pose true βj = 0. Suppose β̂−j are the coefficient
estimates when regressing on the design matrix
with the jth covariate removed. Then it is gener-
ally true that

(XTX)−1 =

[
XT
−jX−j XT

−jXj
XT
j X−j XT

j Xj

]
�
[
(XT
−jX−j)

−1 0
0 0

]
.

This means for some k 6= j, we have

Var(β̂k) = eTk (XTX)−1ek

≥ eTk (XT
−jX−j)

−1ek

= Var(β̂−jk ).

Exercise 27: What is collinearity? Give a few
problems that arise from collinearity.

Solution 27:
Collinearity is when a collection of covariates are
highly correlated. Equivalently, some covariate
(or covariates) is expressable as a linear combina-
tion of some subset of other covariates.

Under high collinearity, coefficient estimates may
be highly unstable. Suppose X1 ≈ X2. If you
were to graph X1 vs. X2, the points would be
scattered around the identity line. This means
that any estimate of β1 + β2 is good, but any
estimate of β1 − β2 is extremely noisy. Hence
the eigenvalues of (XTX) in directions of (1, 1)
and (1,−1) will be large and small, respectively.
Accordingly, then eigenvalues of (XTX)−1 in the
directions of (1, 1) and (1,−1) will be small and
large, respectively, which means that standard er-
rors for β̂0+β̂1 and β̂0−β̂1 will be small and large,
respectively.

Exercise 28: How does collinearity affect pre-
diction at a new x?

Solution 28:
If Xj ≈ Xk in the training data and xj ≈ xk
at the new test point, the prediction will have low
variance (look at the eigenvalue discussion above).
If Xj ≈ Xk in the training data and xj 6≈ xk
at the new test point, then the prediction from
the full model with both covariates will have high
variance.
If Xj ≈ Xk in the training data and xj 6≈ xk at
the new test point, then the prediction from the
reduced model with only one of Xj , Xk will have
low variance (but this is unreliable).

Exercise 29: Give three methods to measure
collinearity.

Solution 29:

1. Condition number. κ2(X) =√
λ1(XTX)/λi(XTX) = σ1(X)/σi(X).

The condition number expresses the rel-
ative proportional difference between the
maximum principal component with the
minimum principal component. The best
possible value is if X is orthogonal i.e. X
is perfectly conditioned.

2. R-squared. Regress Xj onto X−j . Cal-
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culate the R-squared to get an estimate of
how correlated Xj is with some linear com-
bination of X−j .

3. Variance inflation factor (VIF).

V IF =
((XTX)−1)jj
((XTr Xr)−1)22

= 1
1−R2 , where R2

is the R-squared value from regressing Xj
onto X−j . The VIF is the difference in
variance of β̂j in the full model vs in the
model regressing Y onto Xj only.

Exercise 30: Explain forward selection, back-
ward selection.

Solution 30:

Forward selection. Start with an intercept
only model, and push coefficients into the model
one-by-one based on whichever one reduces the
RSS the most.

Backward selection. Start with the full
model, and pop coefficients out of the model one-
by-one based on whichever one has the highest
p-value (or increases the RSS the least).

Exercise 31: What is the Bayesian Information
Criterion (BIC)? Explain how the BIC behaves.

Solution 31:
For a subset of covariate indices S ⊂ {1, · · · , p},

BIC(S) = n log(RSS(model S)/n) + |S| log(n).

The BIC works like a see-saw. As |S| → ∞,
the RSS will undoubtedly decrease, but the sec-
ond term will increase to infinity. The second
term therefore acts as a penalty on the size of
the model.

Exercise 32: Give an example of selective in-
ference + multiple testing.

Solution 32:

Multiple testing. “If you give something
enough chances to be true, it will be true.” Sup-
pose we have one thousand parameters. Then us-
ing forward selection and BIC for model selection
suffers greatly from multiple testing issues, be-
cause some of the parameters will be significant

just by random chance.

Selective inference. Suppose we choose to
cull some “insignificant points” before running
our regression - this is selective inference be-
cause our design matrix is dependent on us having
looked at the data.

Exercise 33: Why might we do robust regres-
sion? What are LAD, least trimmed squares, and
Huber regression?

Solution 33:
We might want to do robust regression for robust-
ness against outliers / influential points.

Least absolute deviation (LAD). LAD is
solving the optimization problem

β̂LAD = arg min
β

n∑
i=1

|Yi −XT
i β|.

Normal LS is optimizing for the mean, whereas
LAD is optimizing for the median (which is more
robust to outliers).

Huber regression. The Huber loss is defined
as

lc(t) =

{
t2/2, |t| ≤ c
c|t| − c2/2, |t| ≥ c

Huber regression is solving the optimization prob-
lem

β̂H = arg min
β

n∑
i=1

lc(Yi −XT
i β).

Least trimmed squares (LTS). LTS is
solving the optimization problem

β̂LTS = arg min
β

min
S⊂1,··· ,n,|S|=q

∑
i=S

(Yi −XT
i β)2.

An iterative method for LTS is running a regres-
sion, stripping away the points with highest resid-
uals, refitting again, stripping away the high resid-
ual points, refitting, etc. until stabilization.

Exercise 34: What is the optimization problem
for weighted least squares? Write it in both sum
and vector form.
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Solution 34:
Let W = diag{w1, · · ·wn}. The optimization
problem is then

β̂WLS = arg min
β

n∑
i=1

wi(Yi −XT
i β)2

= arg min
β

(Y −Xβ)TW (Y −Xβ).

Exercise 35: Show that if σ2
i are known and

W = diag{σ−2
i }i=1,...,n, then weighted least

squares is equivalent to doing normal regression
on the dataset (Xi/σi, Yi/σi).

Solution 35:
Call (X̃i, Ỹi) = (Xi/σi, Yi/σi). Then Ỹ − X̃β =
W 1/2(Y −Xβ). Hence,

β̂WLS = arg min
β

(Y −Xβ)TW (Y −Xβ)

= arg min
β

(W 1/2(Y −Xβ))T (W 1/2(Y −Xβ))

= arg min
β

(Ỹ − X̃β)T (Ỹ − X̃β).

Exercise 36: What is the estimated regression
coefficient for weighted least squares? Derive
some inference properties (under normality as-
sumptions).

Solution 36:
Call (X̃i, Ỹi) = (Xi/σi, Yi/σi). Then Ỹ − X̃β =
W 1/2(Y − Xβ). Using the normal equation, we
have

β̂WLS = (X̃T X̃)−1X̃T Ỹ

= (XTWX)−1XTWY.

Under the normality assumptions, we assume
that Y ∼ N(Xβ, diag{σ2

1 , · · · , w2
n}). If W =

diag{σ−2
1 , · · · , σ−2

n }, then we have

β̂WLS ∼ N
(
β, (XTWX)−1

)
.

Exercise 37: True or False: β̂WLS is unchanged
if we rescale wi (or σi) by a constant for all i.
Justify your answer.

Solution 37:
True. Suppose Y ∼ N(β, diag{σ2

1 , · · · , σ2
n}).

Take W = diagi=1,··· ,n{σ
−2
i } and Wc =

diagi=1,··· ,n{cσ
−2
i } for some constant c. We have

β̂WLS = (XTWX)−1XTWY

= c−1c(XTWX)−1XTWY

= (XTWcX)−1XTWcY.

Exercise 38: Show that if Y ∼ N(Xβ,Σ),
where Σ = diag{σ2

1 , · · · , σ2
n}, then weighted least

squares with weights wi ∝ 1/σi is the BLUE of β.

Solution 38:
We prove a weaker version. Suppose we want to
estimate α = aTβ for some fixed vector a.

• (LE) We want an estimator of the form α̂ =
c0 + cTY for some c0, c.

• (U) We want our estimator to have the
property that

E(α̂) = c0 + cTE(Y ) = c0 + cTXβ = aTβ.

This implies that c0 = 0 and XT c = a.

• (B) We want to minimize Var(α̂) =
Var(cTY ) = cTΣc. Our optimization prob-
lem is then

arg min
c
{cTΣc : XT c = a}.

It can be shown through taking projections
onto the subspace spanned by X that the
best optimizer is Σ1/2c = X̃(X̃T X̃)−1a,
where X̃ = Σ−1/2X. It can then be shown
that

α̂ = aT β̂WLS .

Exercise 39: What is an M-estimator? Show
how you would use iteratively reweighted least
squares to find an M-estimator. Describe IRLS
for LAD.

Solution 39:
The M-estimator is an estimator that minimizes
the average error:

β̂ = arg min
β

n∑
i=1

Loss((Xi, Yi), β)

.

The objective of IRLS is to find the M-estimator.
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Let f(β) =
∑n
i=1 l(Yi −X

T
i β). Then

∇βf = −
n∑
i=1

Xil
′(Yi −XT

i β).

Compared to weighted least squares loss function
fw(β) =

∑n
i=1 wi · (Yi −X

T
i β), we have

∇βfw =

n∑
i=1

−wi ·Xi(Yi −XT
i β).

If we knew the optimal β, then we would have

weights wi =
l′(Yi−XTi β)

Yi−XTi β
.

1. Set weights wi = 1.

2. Fit weighted least squares to get β̂w.

3. Re-set weights wi =
l′(Yi−XTi β)

Yi−XTi β
.

4. Iterate until convergence.

Exercise 40: What is the Box-Cox transforma-
tion? Describe what happens when the parame-
ter(s) go to zero.

Solution 40:
The Box-Cox transformation is defined for pos-
itive responses - for positive or negative λ, the
transformation is defined as

Y λi = β0 + β1Xi + εi

As λ→ 0, the transformation goes to log(Yi).

Exercise 41: What is the shifted log transfor-
mation?

Solution 41:
The shifted log transformation for a positive or
lower bounded response is log(α + Yi) = β0 +
β1Xi + εi.

Exercise 42: What is the ridge regression op-
timization problem? Derive the ridge estimator
and its inference properties under the normality
assumptions.

Solution 42:

For a regularization parameter λ,

β̂ = arg min
β
{||Y −Xβ||22 + λ||β||22}

= arg min{||Y −Xβ||22 | ||β||22 ≤ c} for some c

= (XTX + λI)−1XTY.

Ridge regression estimator is not unbiased:

E(β̂) = (XTX + λI)−1XTXβ.

Ridge regression estimator shrinks variance:

Var(β̂) = σ2(XTX+λI)−1XTX(XTX+λI)−1 ↘ as λ↗ .

Exercise 43: How does the ridge estimator be-
have under high collinearity?

Solution 43:
The ridge estimator spreads the weight across the
coefficient estimates.

Exercise 44: What is the lasso regression opti-
mization problem? How does the lasso regression
behave?

Solution 44:
For a regularization parameter λ,

β̂ = arg min
β
{||Y −Xβ||22 + λ||β||1}

= arg min{||Y −Xβ||22 : ||β||1 ≤ c}

Encourages sparsity by topology of L1 ball.

Exercise 45: What is the sparsity optimization
problem? Why is this optimization problem hard?
Which norm could we use to get closer to a spar-
sity constraint?

Solution 45:
The sparsity optimization problem is for some k,

β̂ = arg min
β
{||Y −Xβ||22 :

∑
j

1βj 6=0 ≤ k}.

This is a non-convex optimization problem. Try
lasso regression instead, or use a different ”norm”

as a surrogate (||β||p =
(∑

j |βj |
p
)1/p

):

β̂ = arg min
β
{||Y −Xβ||22 + λ||β||p}.
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As p→ 0, we get closer and closer to the sparsity
optimization.

Exercise 46: Define missing completely at ran-
dom (MCAR), missing at random (MAR), and
missing not at random (MNAR). Define corrupted
data.

Solution 46:

MCAR. Xij is missing with probability pj i.e.
each data point of a covariate is missing uniformly
at random.

MAR. Xij has probability pij of being missing
i.e. every point of every covariate has some prob-
ability of being missing, and these probabilities
may be different. Different individuals have dif-
ferent probabilities of a missing value, but these
probabilities are a function of the *observed data*
(probabilities can be modeled.)

MNAR. Probabilities of missing values can’t
be modeled based on observed values.

Corrupted. When data is wrong / tampered.

Exercise 47: How might we deal with missing
data? Give three methods and observe how stan-
dard errors and coefficient estimates change de-
pending on the method.

Solution 47:

Ignoring missing values. Just ignoring the
missing values. This has the effect of increas-
ing the standard errors because we have less data
points to work with.

Imputing with sample mean. Impute
sample mean Xj for missing values. This has the
effect of weakening the relationship between the
response and the covariates, as well as weakening
the correlations between the covariates.

Imputing with regression. Regress Xj
onto the other covariates. This has the effect of
weakening the relationship between the response
and the covariates, but it will strengthen the cor-
relations between the covariates (overcorrection,
which could give overconfident standard errors).

Exercise 48: Write down a treatment coding
model for a covariate with three treatment levels
(0,1,2) and one continuous covariate. Test if we
should have three different slopes or all the same
slope for the treatment levels. What would you
run in R?

Solution 48:
Our model is

Yi = αt(i) + βt(i)Xi, where t(i) = treatment group

Using treatment coding, the model becomes

Yi =β0 + βL11{t(i) = 1}+ βL21{t(i) = 2}+ βXX+

βX:L1X · 1{t(i) = 1}+ βX:L2X · 1{t(i) = 2}.

The slopes for all the treatment levels are equiva-
lent if and only if βX:L1 = βX:L2 = 0. We can use
an F-test, where

Reduced Model : Yi =β0 + βL11{t(i) = 1}+
βL21{t(i) = 2}+ βXX

In R, I would run anova(lm(response~T*X)), and
look at the last line for significance.

Exercise 49: True or False: the anova com-
mand in R conducts a different F-test.

Solution 49:
True. The anova command compares the reduced
model against the completely full model, whereas
the F-test that we learned compares the reduced
model against the “full” model.

Exercise 50: Consider a factor model with lev-
els 1, · · · ,K. Construct a test to ask if X has any
association with Y .

Derive at test statistic for testing if αk = αl for
a pair k 6= l. Derive Tukey’s Honestly Significant
Difference test.

Solution 50:
With treatment coding, our model is

Yi = β0 + β11{t(i) = 2}+ · · ·+ βk−11{t(i) = k}+ ε.

To test if there is any association, we can use an F-
test with the null hypothesis β1 = · · · = βk−1 = 0.

To derive a test statistic for pairwise comparisons,
let’s return to the vanilla model without treat-
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ment coding:

Yi = αt(i) + ε.

We want to ask if αj = αk for j 6= k. As-
suming that all the treatment groups have the
same variance, consider the sample mean ᾱk ∼
N(αk, σ

2/nk). Since ᾱj is determined by com-
pleted different points from ᾱk, the two sample
means are independent, which means that

ᾱj − ᾱk ∼ N
(
αj − αk, σ2

(
1

nj
+

1

nk

))
⇐⇒ (ᾱj − ᾱk)− (αj − αk)

σ
√

1
nj

+ 1
nk

∼ N(0, 1).

Because there are K total levels (i.e. total param-
eters),

(ᾱj − ᾱk)− (αj − αk)

σ̂
√

1
nj

+ 1
nk

=
(ᾱj − ᾱk)− (αj − αk)

SE(ᾱj − ᾱk)

(1)

∼ tn−K . (2)

While this can be used to construct a confidence
interval, there are

(
K
2

)
pairs to test, which grows

quadratically; we need to apply the Bonferroni
correction in this case since this is a multiple test-
ing problem, and this may be too conservative.

Let Tk = ᾱk−αk
σ̂/
√
nk
∼ tn−K . Then the studentized

range distribution is

max
k

Tk −min
k
Tk ∼ q# of levels,d.f. in denom = qK,n−K .

Let q1−α be the 1 − α quantile value. If all the
group sizes are the same, then

(1) =
Tj − Tk√

2
≤ |Tj − Tk|√

2
≤ maxk Tk −mink Tk√

2
.

Hence we have the following confidence interval
for any pair j 6= k:

(αj − αk)± q1−α√
2
· SE(ᾱj − ᾱk).

Exercise 51: Describe the scenarios for block
randomization and complete randomization.

Solution 51:
Block randomization is when you randomly as-
sign treatments within each group, and complete
randomization is when you randomly assign treat-

ments across the entire set.

Exercise 52: Analyze the following model ma-
trix:[

BR w/ block effect BR w/o block effect
CR w/ block effect CR w/o block effect

]

Solution 52:
Enumerating all four models:

1. BR with block effect: Yi = µ+αb(i)+βt(i)+ε

2. BR without block effect: Yi = µ+ βt(i) + ε

3. CR with block effect: Yi = µ + αb(i) +
βt(i) + ε, but with the treatments randomly
assigned with no regard to block.

4. CR without block effect: Yi = µ+ βt(i) + ε,
but with the treatments randomly assigned
with no regard to block.

Block randomization can reduce vari-
ance. For block randomization, there exists a
permutation matrix Π such that

ΠX =


1n/4 0n/4 0n/4
1n/4 0n/4 1n/4
1n/4 1n/4 0n/4
1n/4 1n/4 1n/4

 , so

XTX =

 n n/2 n/2
n/2 n/2 n/4
n/2 n/4 n/2

 .
For complete randomization, we get that

XTX =

 n n/2 n/2
n/2 n/2 n/4 +m
n/2 n/4 +m n/2

 .
We get that (XTX)−1

33 under complete random-
ization is greater than or equal to (XTX)−1

33 un-
der block randomization (equality if and only if
m = 0).

To include or not to include blocks.
Complete randomization with and without blocks
are both valid models. The decision to include
blocks (or not include) can effect the variance of
our coefficient estimate of the treatment effect.

Take the complete randomization model with
blocks, where Ai is a random variable that de-
notes which block point i is a part of. We have

Yi = µ+Ai + βt(i) + ε, where ε ∼ N(0, 1).
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Define

ᾱ =

B∑
b=1

πbαb and ν2 =

B∑
b=1

πb(αb − ᾱ)2.

Then

Yi = µ+Ai + βt(i) + ε

= (µ+ ᾱ)︸ ︷︷ ︸
=µ̃

+βt(i) + (ε+Ai − ᾱ)︸ ︷︷ ︸
=ε̃

= µ̃+ βt(i) + ε̃, where ε̃ ∼i.i.d. N(0, σ2 + ν2).

The reason the ε̃’s are iid is because we did com-
plete randomization (i.e. we didn’t care about
blocks when assigning treatments.) In sum, we
see two sources of variance:

1. σ2 (with block) vs. σ2 +ν2 (without block).

2. (XT
bigXbig)−1 (with block) vs.

(XT
smallXsmall)

−1 (without block). In
general, (XT

bigXbig)−1 � (XT
smallXsmall)

−1.

Whether or not the variance is bigger depends on
these two factors, which work against each other.
If the block effects are very different, then it might
be better to include blocks. If instead block effects
are all relatively similar, then it might be better
to exclude blocks.
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